INDIAN SCHOOL MUSCAT

FIRST TERM EXAMINATION

SEPTEMBER 2018

CLASS XI
 Marking Scheme - COMPUTER SCIENCE [THEORY]
 SET A

Q.NO.	Answers	Marks
1 a.	RAM- refers to Random Access Memory- it is also called read-write memory where both read and write operations can take place. But the RAM is a volatile memory, its contents are lost when power is turned off. - $1 / 2$ mark ROM- refers to Read Only memory where only read operations can take place. ROM is a non-volatile memory - $1 / 2$ mark	1
b.	Parallel ports can send or receive a byte at a time. These 8 bits are transmitted parallel to each other. Parallel ports come in the form of 25-pin female connector, These are used to connect printer, scanner etc. 1 mark	1
c.	CISC- complex instruction set computer refers to computers designed with a full set of computer instructions that were intended to provide needed capabilities in the most efficient way. $\quad-1 / 2$ mark RISC- Reduced instruction set computer - is a microprocessor that is designed to perform a smaller number of types of computer instructions so that it can operate at a higher speed MIPS. Each instruction type that a computer must perform require additional transistors/circuit, a large list of instructions tends to make microprocessor more complicated and slow. - $1 / 2$ mark	1
d.	Explanation of Bluetooth -1 mark	1
e.	Cache memory is a special high-speed storage mechanism that stores the most recently accessed data. - $1 / 22$ mark It makes CPU run faster if the required data is found in cache. $-1 / 2$ mark	1
f.	Any 2 characteristics - 1/2 mark each	1
g .	i) Infra-Red Port Explanation - 1 mark ii) PS-2 Port Explanation - 1 mark	2
h.	i) note on DVD's - 1 mark \quad ii) note on Hard Disks - 1 mark	2
2 a .	$\backslash a^{\prime}-$ size -1 byte $-1 / 2$ mark $" \backslash a "-$ size 2 bytes $-1 / 2$ mark	1
b.	Syntax errors - occurs when rules of programming language are misused ie when grammatical rule of $\mathrm{C}++$ is violated. $1 / 2$ mark Example - $1 / 2$ mark Logical error- which causes a program to produce incorrect or undesired output . - $1 / 2$ mark Example- $1 / 2$ mark	2
c.	i) Keywords- These are the words reserved by programming language for special purpose and convey a special meaning to the compiler. $1 / 2$ mark eg. break, if, int, float etc. - Example - $1 / 2$ mark ii) Escape sequence - Non graphic characters that cannot be typed directly from keyboard eg. tabs, carriage return etc. these can be represented by using escape sequence. - $1 / 2$ mark Example - ' \mathbf{t}^{\prime} Horizontal tab - $1 / 2$ mark (any one)	2
3 a .	A reference variable is an alias name for a previously defined variable. $-1 / 2$ mark	1

	Usage of it is that the same data object can be referred by two names and these names can be used interchangeably. - $1 / 2$ mark	
b.	$\begin{aligned} & \text { Output: } \\ & 6666 \\ & 36.4219 \\ & 1 \text { mark each line } \end{aligned}$	2
c.	Fundamental data types - that are not composed of any other datatype. $1 / 2$ mark \quad Example any one $1 / 2$ mark Derived data type- that are composed of fundamental data types. $1 / 2$ mark Example - any one - $1 / 2$ mark	2
4a.	Type casting operators allow you to convert a data item of a given type to another data type according to the requirement. It is explicit conversion by the programmer. - $1 / 2$ mark Example - any one - $1 / 2$ mark	1
b.	(income>20000)? ${ }^{\text {a }}$ (ax=3000:tax=1500 -1 mark	1
c.	i)The expression (a) is an assignment expression and the expression (b) is a relational expression that tests for equality. - $1 / 2$ mark each ii) The result of (a) will be Avg having value 70 and the result of (b) will be 0 (false) - $1 / 2$ mark each	2
d.	i) z \% ! ! =0 \&\& z<0 - 1 mark ii) donation $>=3000 \& \&$ donation $<=4000\| \|$ guest=2 -1 mark	2
e.	i) 246 $1 / 2$ mark each for correct answer ii) $\begin{aligned} & w=56 \\ & y=46 \\ & 1 / 2 \text { mark } \quad \text { for each line } \\ & \hline \end{aligned}$	2
f.	i) $\operatorname{sqrt}\left(p^{*} x\right) / 5^{*} \operatorname{pow}(m, 7)+3^{*} y-\operatorname{atan}(x) \quad-1$ mark ii) $\operatorname{fabs}\left(\exp \left(2^{*} x\right)-\cos (x)\right)$ - 1 mark	2
5 a.	limitation -switch can only test for equality(any) - $1 / 2$ mark advantage -switch statement is more efficient than if in a situation that supports the nature of switch operation. - $1 / 2$ mark	1
b.	Infinite loop can be used to create an endless loop. Can be created by omitting the test expression. $\quad-1 / 2$ mark for ($\mathrm{i}=25$; ;++i) or any example $\quad-1 / 2$ mark	1
c.	```break statement- skips the rest of the loop and jumps over to the statement following the loop. -1 mark continue statement skips the rest of the loop statements and causes the next iteration of the loop. - 1 mark```	2
d.	int $x=5 ;$ $-1 / 2$ mark while $(x<20)$ $-1 / 2$ mark \{cout<<x<<endl; $x+=2 ;$ $-1 / 2$ mark \} $-1 / 2$ mark cout<<"end of loop";	2
e.	$\begin{aligned} & 1357 \\ & 1357 \\ & 1 \text { mark for each correct line } \end{aligned}$	2
f.	\#include<iostream.h>	2


	```void main() {int num=4; do { ans=*num; ans*=num 1/2 mark; ans should be declared 1/2 mark cout<ans; cout<<ans; 1/2 mark } while(num<10) } while(num<10); 1/2 mark```	
g .	```void main( ) {char ch; cin >> ch; switch(ch) { case 'R': cout<<"Colour is Red "; case 'W': cout<<" Colour is White "; default: cout<<"Colour is other than Red and White "; } Proper use of switch - 1/2 mark case -1 mark default- 1/2 mark brackets - 1/2 mark```	2
6.a.	for Declaration \& input statements -1 mark for correct logic to find the smallest and displaying	3
b.	for Declaration \& input statements - $\mathbf{1}$ mark for correct logic and displaying Fibonacci series $\mathbf{- 2}$ marks	3
c.	Header file, declarations -1 mark   Correct nested loop \& output statement with endl at correct place -2 marks	3
d.	for Declaration \& input statements $\mathbf{- 1}$ mark    for correct logic and displaying LCM $\mathbf{- 1}$ mark    for correct logic and displaying GCD $\mathbf{- 1}$ mark	3
7 a.	```for declaration & input statements -1 mark for correct logic to calculate Commission -2 1/2 marks for displaying -1/2 mark```	4
b.	menu $\mathbf{- 1}$ mark   correct logic for choice 1 $\mathbf{- 1}$ mark   correct logic for choice 2 $\mathbf{- 1}$ mark   correct logic for choice 3 and continuation   $\mathbf{- 1}$ mark	4
c.	for declaration \& input statements -1 mark   for correct logic - to check Palindrome $-21 / 2$ marks   for displaying $-1 / 2$ mark	4
d.	for declaration \& input statements $\mathbf{- 1}$ mark    for correct logic to find the sum of series $-21 / 2$   marks     for displaying $-1 / 2$ mark	4

